Почки расположены ретроперитонеально по обе стороны позвоночного столба на уровне Th12–L2. Масса каждой почки взрослого мужчины — 125–170 г, взрослой женщины — 115–155 г, т.е. суммарно менее 0,5% общей массы тела.
Паренхима почки подразделяется на расположенное кнаружи (у выпуклой поверхности органа) корковое и находящееся под ним мозговое вещество. Рыхлая соединительная ткань образует строму органа (интерстиций).
Корковое вещество расположено под капсулой почки. Зернистый вид корковому веществу придают присутствующие здесь почечные тельца и извитые канальцы нефронов.
Мозговое вещество имеет радиально исчерченный вид, поскольку содержит параллельно идущие нисходящую и восходящую части петли нефронов, собирательные трубочки и собирательные протоки, прямые кровеносные сосуды (vasa recta). В мозговом веществе различают наружную часть, расположенную непосредственно под корковым веществом, и внутреннюю часть, состоящую из вершин пирамид
Интерстиций представлен межклеточным матриксом, содержащим отростчатые фибробластоподобные клетки и тонкие ретикулиновые волокна, тесно связанные со стенками капилляров и почечных канальцев
Нефрон как морфо-функциональная единица почки
У человека каждая почка состоит примерно из одного миллиона структурных единиц, называемых нефронами. Нефрон является структурной и функциональной единицей почки потому, что он осуществляет всю совокупность процессов, в результате которых образуется моча.
Строение нефрона:
- Капсула Шумлянского-Боумена, внутри которой расположен клубочек капилляров – почечное (мальпигиево) тельце. Диаметр капсулы – 0,2 мм
- Проксимальный извитой каналец. Особенность его эпителиальных клеток: щеточная каемка – микроворсинки, обращенные в просвет канальца
- Петля Генле
- Дистальный извитой каналец. Его начальный отдел обязательно прикасается к клубочку между приносящей и выносящей артериолами
- Связующий каналец
- Собирательная трубка
Функциональноразличают 4 сегмента:
1. Гломерула;
2.Проксимальный – извитая и прямая части проксимального канальца;
3.Тонкий отдел петли – нисходящий и тонкая часть восходящего отдела петли;
4.Дистальный – толстая часть восходящего отдела петли, дистальный извитой каналец, связующий отдел.
Собирательные трубки в процессе эмбриогенеза развиваются самостоятельно, но функционируют вместе с дистальным сегментом.
Начинаясь в коре почки, собирательные трубки сливаются, образуют выводные протоки, которые проходят через мозговое вещество и открываются в полость почечной лоханки. Общая длина канальцев одного нефрона – 35-50 мм.
В различных сегментах канальцев нефрона имеются существенные отличия в зависимости от их локализации в той или иной зоне почки, величине клубочков (юкстамедулярные крупнее суперфициальных), глубине расположения клубочков и проксимальных канальцев, длине отдельных участков нефрона, особенно петель. Большое функциональное значение имеет зона почки, в которой расположен каналец, независимо от того, находится ли он в корковом или мозговом веществе.
В корковом слое находятся почечные клубочки, проксимальные и дистальные отделы канальцев, связующие отделы. В наружной полоске наружного мозгового вещества находятся тонкие нисходящие и толстые восходящие отделы петель нефронов, собирательные трубки. Во внутреннем слое мозгового вещества располагаются тонкие отделы петель нефрона и собирательные трубки.
Такое расположение частей нефрона в почке неслучайно. Это важно в осмотическом концентрировании мочи. В почке функционирует несколько различных типов нефронов:
1.суперфициальные (поверхностные, короткая петля);
2.интракортикальные (внутри коркового слоя);
3.юкстамедуллярные (у границы коркового и мозгового слоя).
Одним из важных отличий, перечисленных трех типов нефронов, является длина петли Генле. Все поверхностные — корковые нефроны обладают короткой петлей, в результате чего колено петли располагается выше границы, между наружной и внутренней частями мозгового вещества. У всех юкстамедуллярных нефронов длинные петли проникают во внутренний отдел мозгового вещества, часто достигая верхушки сосочка. Интракортикальные нефроны могут иметь и короткую и длинную петлю.
ОСОБЕННОСТИ КРОВОСНАБЖЕНИЯ ПОЧКИ
Почечный кровоток не зависит от системного артериального давления в широком диапазоне его изменений. Это связано с миогенной регуляцией, обусловленной способностью гладкомышечных клетокvasafferensсокращаться в ответ на растяжение их кровью (при повышении артериального давления). В результате количество протекающей крови остается постоянным.
В одну минуту через сосуды обеих почек у человека проходит около 1200 мл крови, т.е. около 20-25% крови, выбрасываемой сердцем в аорту. Масса почек составляет 0,43% массы тела здорового человека, а получают они ¼ часть объема крови, выбрасываемой сердцем. Через сосуды коры почки протекает 91-93% крови, поступающей в почку, остальное ее количество снабжает мозговое вещество почки. Кровоток в коре почки в норме составляет 4-5 мл/мин на 1 г. ткани. Это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что при изменении артериального давления (от 90 до 190 мм.рт.ст) кровоток почки остается постоянным. Это обусловлено высоким уровнем саморегуляции кровообращения в почке.
Короткие почечные артерии — отходят от брюшного отдела аорты и представляют собой крупный сосуд с относительно большим диаметром. После вхождения в ворота почек они делится на несколько междолевых артерий, которые проходят в мозговом веществе почки между пирамидами до пограничной зоны почек. Здесь от междольковых артерий отходят дуговые артерии. От дуговых артерий в направлении коркового вещества идут междольковые артерии, которые дают начало многочисленным приносящим клубочковым артериолам.
В почечный клубочек входит приносящая (афферентная) артериола, в нем она распадается на капилляры, образуя мальпегиев клубочек. При слиянии они образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Эфферентная артериола, затем снова распадаются на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев.
Две сети капилляров – высокого и низкого давления.
В капиллярах высокого давления (70 мм рт.ст.) – в почечном клубочке – происходит фильтрация. Большое давление связано с тем, что:1) почечные артерии отходят непосредственно от брюшного отдела аорты; 2) их длина невелика; 3) диаметр приносящей артериолы в 2 раза больше, чем выносящей.
Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, затем вокруг канальцев, это так называемая «чудесная сеть». Междольковые артерии образуют многочисленные аностомозы, которые играют компенсаторную роль. В образовании околоканальцевой капиллярной сети существенное значение имеет артериола Людвига, которая отходит от междольковой артерии, либо от приносящей клубочковой артериолы. Благодаря артериоле Людвига возможно экстрагломерулярное кровоснабжение канальцев в случае гибели почечных телец.
Артериальные капилляры, создающие околоканальцевую сеть, переходят в венозные. Последние образуют звездчатые венулы, расположенные под фиброзной капсулой — междольковые вены, впадающие в дуговые вены, которые сливаются и образуют почечную вену, которая впадает в нижнюю половую вену.
В почках различают 2-а круга кровообращения: большой корковый — 85-90% крови, малый юкстамедулярный — 10-15% крови. В физиологических условиях 85-90% крови циркулирует по большому (корковому) кругу почечного кровообращения, при патологии кровь движется по малому или укороченному пути.
Мочевая система организма
В организме человека постоянно происходят различные процессы, в ходе которых вырабатываются продукты распада. Если организм по каким-то причинам теряет возможность выводить отходы наружу, они начинают скапливаться. Когда токсический уровень оказывается слишком высок, токсины начинают разрушать ткани и органы. Поэтому очень важно, чтобы мочевыводящая система работала слажено, без сбоев, поскольку её задачей является вывод из тела многих отходов.
Мочевыводящая система состоит из:
- двух почек, содержащих нефроны;
- двух мочеточников;
- мочевого пузыря;
- мочеиспускательного канала;
- артерий и вен.
Мочеточники соединяют почки с мочевым пузырем, который является местом временного хранения мочи. Урина покидает тело во время мочеотделения через мочеиспускательный канал.
Что такое почки
Почки – это парный орган, расположенный в задней верхней части брюшной полости по двум сторонам позвоночника, который защищают нижние ребра и слой жира. Почечная артерия, вена и мочеточники входят в почки в средней части, которую называют воротами почки.
Помимо того, что в почках происходит забор продуктов распада из крови и формирование мочи, они выполняют немало других функций. Одна из них – регулирование объема крови, что осуществляется при помощи контроля за количеством воды, выводимой и всасываемой обратно в кровь.
Еще одна задача почек – регуляция электролитов. Для этого они управляют выделением и обратным всасыванием (реабсорбцией) ионов калия и натрия. Отвечает орган и за регуляцию кислотно-щелочного баланса путем осуществления контроля за выделением и обратным всасыванием водорода. Если из крови выделяется большее количество ионов водорода, плазма становится менее кислой (более щелочной), тогда как при их задержке, крови становится кислее (менее щелочной).
Ответственны почки и за регулирование давления. Происходит это благодаря контролю за количеством выделяемой воды и уровнем ее реабсорбции. Когда жидкость в организме задерживается, объем крови увеличивается, что приводит к повышению давления крови. Если же почки выделяют в мочу большее количество воды, объем плазмы сокращается, давление понижается.
Отвечают почки также за регуляцию выработки эритроцитов, красных клеток крови. Когда их число уменьшается, уровень кислорода в крови также понижается, что заставляет почки вырабатывать вещество, называемое эритропоэтин. Этот гормон достигает по кровеносной системе костного мозга и стимулирует его к выработке большего количества эритроцитов. При достижении оптимального числа красных клеток в крови, этот процесс прекращается посредством механизма негативной обратной связи.
Что такое нефрон
Структурно-функциональной единицей почки является нефрон (только в одной почке существует более миллиона нефронов). Это значит, что нефрон почки выполняет главную почечную работу мочевыделительной системы. Нефроны как функциональные единицы почек выполняют задачи по своевременному удалению продуктов метаболизма из тела (до того, как токсины достигнут токсических уровней).
Основными частями нефрона являются почечный клубочек и система канальцев. Клубочек являет собой сеть взаимно переплетающихся капилляров, собранных в чашеобразной структуре, называемой капсула Боумена. Кровь фильтруется в капиллярах клубочков, а прошедшая фильтрацию жидкость (фильтрат) собирается в пространстве капсулы Боумена, проходя через фильтрующую мембрану.
Фильтрат образуется из крови после того, как через фильтрующую мембрану проходят вещества, размеры которых достаточно малы для того, чтобы проникнуть свозь неё. Этот фильтрат движется дальше через систему канальцев, где фильтрация продолжается. При этом одни вещества удаляются из фильтрата, другие прибавляются.
Таким образом, вытекая из почечного клубочка, фильтрат проходит четыре основных сегмента нефрона:
- Проксимальный изгиб канальца – здесь происходит обратное всасывание питательных веществ и элементов, необходимых для работы организма.
- Петля Генле – в этой части нефрона, образованной нисходящей и восходящей частями канальца с узким просветом, осуществляется контроль за концентрацией мочи.
- Дистальный изгиб канальца – происходит регуляция натрия, калия и кислотно-щелочного баланса.
- Сборный канал – в месте, куда вливаются несколько канальцев, происходит регуляция количества воды и обратное всасывание натрия.
Таким образом, нефрон, основная функциональная единица почек, выполняет главную работу по удалению продуктов обмена веществ посредством фильтрации и секреции. Нужные организму вещества при этом возвращаются обратно в кровь.
Как работает нефрон
Нефроны, структурно-функциональные единицы почки, выполняют свои задачи с помощью кровообращения. Кровь входит в почечные клубочки через афферентные артериолы (ответвления почечной артерии) и выходит через более узкие эфферентные артериолы. Разница в просвете этих сосудов создает гидростатическое давление, благодаря которому кровь движется. Ток крови благодаря созданному гидростатическому давлению заставляет молекулы проходить через фильтрующие мембраны в почечных клубочках. В этом и состоит механизм процесса фильтрации.
Капиллярная сеть расположена вокруг петли Генле, проксимального и дистального канальца. По мере движения фильтрата через нефрон, одни элементы прибавляются, другие удаляются из него. При этом приток различных веществ больше, чем выход веществ.
Нормальный фильтрат содержит воду, глюкозу, аминокислоты, мочевину, креатинин и растворы солей (хлорид натрия, ионы калия, ионы бикарбоната). Также в нем могут находиться различные токсины и лекарства. Протеины и красные клетки крови в фильтрате не содержатся, поскольку их размер слишком велик для того, чтобы пройти через фильтрующую мембрану клубочков. Если эти крупные молекулы присутствуют в фильтрате, это говорит о нарушениях в процессе фильтрации.
Движение элементов из нефрона в кровь называется обратное всасывание (реабсорбция), тогда как из крови в нефрон – секрецией (выделением). Их схематическое движение подано в следующей таблице:
Проксимальный изгиб канальца | Петля Генле | Дистальный изгиб канальца | Сборный канал | |
Реабсорбция | аминокислоты, глюкоза, хлорид натрия, ионы калия, ионы бикарбоната, вода | хлорид натрия, вода, | хлорид натрия, ионы бикарбоната, вода, ионы водорода | хлорид натрия, вода, |
Секреция | Мочевая кислота, ионы водорода, лекарства | Ионы водорода, ионы калия |
Исходя из таблицы, очевидно, что мочевая кислота и лекарства не фильтруются. Они выделяются в процессе секреции в систему канальцев в проксимальном изгибе. Фильтрат в петле Генле имеет высокую концентрацию продуктов распада, таких как мочевая кислота, мочевина и креатинин. Таким образом, когда фильтрат достигает петли Генле, почти все полезные вещества, необходимые организму уже возвращены.
На конечном этапе компонентами мочи являются вода, хлорид натрия, калий, бикарбонат, креатинин и мочевина. В отношении креатинина не происходит ни обратного всасывания, ни выделения в каналец. По этим причинам креатинин выбран для расчетов скорости клубочковой фильтрации, необходимой для определения функциональной пробы почек. Высокие уровни креатинина свидетельствуют о проблемах с клубочковой фильтрацией в нефроне.
Вода в моче
Функции нефрона заключаются и в том, что он контролирует количество воды путем введения и выведения воды в фильтрат, которая следует за натрием благодаря осмотическому градиенту. Вода движется с места, где меньшая концентрация хлорида натрия в сторону его большей концентрации. При этом нисходящий сегмент петли Генле сильно проницаем для её молекул. Вода тут всасывается обратно в общий ток крови благодаря осмотическому давлению. Восходящий сегмент петли Генле для воды непроницаем, но через его стенки в интерстиций проходит хлорид натрия.
Существуют два основных гормона, регулирующих скорость выведения воды из организма. Первый гормон – это альдостерон, который оказывает влияние на сборный канал, собирающий мочу от канальцев, и заставляет организм задерживать воду. Давление крови при этом увеличивается. Этот механизм запускается, когда в крови понижено давление крови или низкий уровень ионов натрия. Таким образом, альдостерон является частью системы регуляции давления, включающей в себя три компонента: ренин-ангиотензин-алдостерон.
Вторым веществом является антидиуретический гормон, который принуждает всасываться обратно в кровь большему количеству воды из сборных каналов путем увеличения проницаемости их стенок. Вода при этом проникает обратно в кровь под действием осмоса. Большее количество антидиуретического гормона выделяется, когда организму нужно задержать большее количество воды, – и это приводит к большей концентрированности мочи.
Повреждения почечных клубочков
Таким образом, очевидно, что любые патологии почечных клубочков ведут к серьезным проблемам. Патофизиологические механизмы повреждения главной части структурной единицы почки, почечного клубочка объясняются при помощи трех моделей:
- Теории целого нефрона.
- Теории гиперфильтрации.
- Теория комплексных отложений.
Теория целого нефрона объясняется следующим образом. Каждый нефрон являет собой почку в миниатюре. Поэтому повреждение одного из его компонентов приводит к повреждению целого нефрона. Это может происходить из-за дефектов перитубулярной капиллярной сети, изменения в составе жидкости, текущей через канальцы, сокращения снабжения кислородом и, как следствие, дефицита в обмене веществ.
Последствиями повреждения нефрона являются уменьшение фильтрации белка и сокращение синтеза гормонов, прежде всего – эритропоэтина. В результате происходит некроз канальцевого эпителия и недостаточность фильтрации.
Иногда нефрон может восстановиться самостоятельно. Но бывает и противоположная картина – некроз нефрона. При этом может в качестве компенсации произойти гипертрофия или гиперфункция нефронов, что окружают погибшую единицу. Затем следует фиброз пораженных частей почки с последующей сосудистой недостаточностью оставшихся нефронов и прогрессирующее повреждение почки.
Вторая гипотеза – теория гиперфильтрации, когда усиленная фильтрация приводит к повреждению почечных клубочков из-за повышения давления крови, которое более интенсивно давит на их ткани. Это может быть результатом действия токсичных для почек лекарств.
Теория комплексных отложений говорит о том, что проблема возникает, когда иммунные комплексы, являющиеся слипшимися сгустками антител, из-за больших размеров не могут пройти в канальцы. Поэтому они откладываются в клубочке, вызывая склероз и рубцевание тканей.
В любом случае, чтобы не вызвало повреждение нефронов, ситуация опасна не только для здоровья, но и жизни человека. Поэтому при любых подозрениях относительно сбоев в работе почек нужно обратиться к врачу и пройти обследования.
Нефрон (от греческого νεφρός (нефрос) — «почка» ) — структурно-функциональная единица почки животного. Нефрон состоит из почечного тельца, где происходит фильтрация, и системы канальцев, в которых осуществляются реабсорбция (обратное всасывание) и секреция веществ.
Различают три типа нефронов — кортикальные нефроны (~85 %) и юкстамедуллярные нефроны (~15 %), субкапсулярные.
Капсула Боумена-Шумлянского окружает клубочек и состоит из висцерального (внутреннего) и париетального (внешнего) листков. Внешний листок представляет собой обычный однослойный плоский эпителий. Внутренний листок составлен из подоцитов, которые лежат на базальной мембране эндотелия капилляров, и ножки которых покрывают поверхность капилляров клубочка. Ножки соседних подоцитов образуют на поверхности капилляра интердигиталии. Промеж Небольшие молекулы — такие, как вода, ионы Na+, Cl-, аминокислоты, глюкоза, мочевина, одинаково свободно проходят через клубочковый фильтр, так же проходят через него белки массой до 30 кДа, хотя, поскольку белки в растворе обычно несут отрицательный заряд, для них определённое препятствие составляет отрицательно заряженный гликокаликс. Для клеток и более крупных белков клубочковый ультрафильтр представляет непреодолимое препятствие. В результате, в пространство Шумлянского-Боумена, и далее в проксимальный извитой каналец, поступает жидкость, по составу отличающаяся от плазмы крови только отсутствием крупных белковых молекул.